

Vibration Terms

D = peak to peak displacement

 Δf = bandwidth in Hertz

 $g^2/Hz = acceleration density$

m = mass

f = frequency in Hertz (Hz)

a = acceleration

- V = velocity
- g = the acceleration of gravity

g_{rms} = the rms value of acceleration in units of gravity

Vibration Equations

Sinusoidal Vibration

Velocity, Acceleration and Displacement Relationships				
English			Metric	
$V = \pi f D$			$V = \pi f D$	
V = 61.48 X g ÷ f	D = inches peak to peak		V = 1.56 X g ÷ f	D = meters peak to peak
g = 0.0511 f ² D	V = inches per second		g = 2.013 f ² D	V = meters per second
g = 0.016266Vf	f = frequency in Hertz (Hz)		g = 0.641 Vf	f = frequency in Hertz (Hz)
a = 0.102Df ²	g = 386.1 inches/second ²	\sum	a = 4.026Df ²	g = 9.80665 meters/second ²
D = 0.3183 X V ÷ f	a= inches/second ²		D = 0.3183 X V ÷ f	a = meters/second ²
D = 19.57 X g ÷ f ²			$D = 0.4968 X g \div f^2$	

Constants for True Sine Waves			
rms value = 0.707 X peak value	peak value = 1.414 X rms value		
rms value = 1.11 average value	peak value = 1.57 X average value		
average value = 0.637 X peak value	peak to peak = 2 X peak value		
average value = 0.90 X rms value	crest factor = peak value ÷ rms value		

Random Vibration

Acceleration, Acceleration Density and Displacement Relationships (For a flat or white noise spectrum) $g_{rms} = SQR [\Delta f (g^2/Hz)]$ $g^2/Hz = (D \div 42.8)^2 X f^3$ $D = 42.8 [SQR (g^2/Hz \div f^3)]$